Evidence Suggesting that Specialized Visual Regions Are Formed by Pruning in Early Childhood
Monday, May 24, 2010
There are quite a few specialized visual regions in the brain. For example, the fusiform face area (FFA) activates for faces, and the visual word form area (VWFA) in the left fusiform is consistently active for words.
How do these specialized cortical regions develop? Is it experience dependent? Do regions have a preexisting preference for certain visual features? (For example, perhaps the visual word form region prefers high contrast stimuli with sharp borders). Do these regions form by increasing activation to preferred stimuli, or a decreasing activation to nonpreferred stimuli? Cantlon and colleagues investigated these questions in a recent study.
They tested prereading five year olds and adults in an fMRI experiment. Participants saw faces, letters, numbers, shoes and scrambled images and pressed a button if a green border appeared around the picture. There were two interesting findings.
The first concerned the visual word form area. Both adults and children had a specialized brain region in the left fusiform that activated more for letters than objects. However, while adults activated that region more for letters than for numbers, children had equally high activation for letters and numbers.*
These results support a role for both experience and low level visual features in the development of the visual word form area. Note that these children are nonreaders, but they already activate the left fusiform for letters and numbers. So perhaps there’s something hardwired in the left fusiform that prefers symbol-like, high contrast, visual stimuli. But only adults, who have had extensive experience with letters, show differential activation for words and numbers.
The authors then investigated the relationship between activation level and behavior. They tested children on a face matching task and a letter naming task. Contrary to what you might expect, activation in the fusiform face area did not correlate with face matching skill, and activation in the visual word form area did not correlate with letter naming skill.
Rather, skill was negatively correlated with activation to the nonpreferred category. Face matching performance was inversely correlated with FFA activation to shoes. And letter naming was inversely correlated with VWFA activation to faces. This suggests that that increased skill in face and letter recognition is associated not with enhancing activation to preferred stimuli, but with pruning back activation to unrelated stimuli. **
*Methodological note: ROI selection, 10 strongest voxels within a sphere 10mm radius around peaks of All>scrambled.
**Note that not all nonpreferred stimuli show this inverse correlation. In the face area, there was no correlation between face skill and symbols, and in the VWFA, there is no correlation between letter naming skill and shoe activation. Perhaps these nonpreferred stimuli too far from the preferred stimulus, so no pruning is needed?
Cantlon JF, Pinel P, Dehaene S, & Pelphrey KA (2010). Cortical Representations of Symbols, Objects, and Faces Are Pruned Back during Early Childhood. Cerebral cortex (New York, N.Y. : 1991) PMID: 20457691